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1 Introduction 

Dramatic changes are unfolding in lighting 
technology.  Semiconductor-based solid-state 
lighting (SSL), until recently associated mainly 
with simple indicator lamps in electronics and 
toys, have become as bright and efficient as 
incandescent bulbs, at nearly all visible 
wavelengths.  They have already begun to 
displace incandescent bulbs in many applications, 
particularly those requiring durability, 
compactness, cool operation and/or directionality 
(e.g., traffic, automotive, display, and 
architectural/directed-area lighting). 

Further major improvements in this technology 
are believed achievable.  External electrical-to-
optical energy conversion efficiencies exceeding 
50% have been achieved in infrared1 and deep-
red2 light emitting devices.  If similar efficiencies 
are achieved across the visible spectrum, the result 
would be the holy grail of lighting:  a 150-
200lm/W white light source two times more 
efficient than fluorescent lamps, and ten times 
more efficient than incandescent lamps. 

This new white light source would change the 
way we live, and the way we consume energy.  
The human visual experience would be enhanced, 
through lights whose intensity and color 
temperature are independently tunable while 
maintaining high efficiency.  In the long term, 
worldwide electricity consumption for lighting 
could decrease by more than 50%, and total 
electricity consumption could decrease by more 
than 10%.3 

The aim of this article is twofold. 
First, we give a brief historical and forward-

looking overview of conventional and SSL 

lighting technologies.  We focus on SSL 
technology based on inorganic light-emitting 
diodes (SSL-LEDs), rather than those based on 
organic light-emitting diodes (SSL-OLEDs), as 
SSL-LED technology is more advanced and more 
likely to be first to enter general illumination 
applications. 

Second, we describe some of the simplest but 
most important lamp, chip and materials design 
choices that will need to be made.  We especially 
focus on the constraints imposed on those design 
choices if SSL-LED technology is to fulfill its 
promise for general illumination.  Note that 
quantifying these constraints depends to some 
extent on physical models and assumptions about 
the relationship between design and performance.  
Hence, the constraints can be viewed as providing 
interim guidance to lamp, chip and materials 
technologists, while stimulating development of 
improved physical models and assumptions by 
semiconductor scientists. 

2 Condensed History of 
Lighting  
Lighting technologies are substitutes for 

sunlight in the 425-675 nm spectral region where 
sunlight is most concentrated and to which the 
human eye has evolved to be most sensitive.  The 
history of lighting can be viewed as the 
development of increasingly efficient technologies 
for creating visible light inside, but not wasted 
light outside, of that spectral region. 

A 200-year perspective on that history is shown 
in Figure 1.4   The left axis indicates luminous 
efficacy, in units of lumens (a measure of light 
which factors in the human visual response to 
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Figure 1:  200-year evolution of luminous efficacy for various lighting technologies. 

In practice, there are losses at every step of the 
way, and efficiently creating white light from 
semiconductor materials with band-gaps that span 
the visible spectrum is extremely challenging.  
Nevertheless, great strides are being made, and 
SSL-LED technology is currently on a very rapid 
improvement curve, particularly the monochrome 
lamps in the red, green and blue6 on which it is 
based. 

various wavelengths) per watt.  The right axis 
indicates the corresponding power-conversion 
efficiency for a tri-LED-color white light source 
with moderate color rendering (CRI=80) and 
relatively warm color temperature (CCT=3900K).  
For such a source, 400lm/W would correspond to 
100% power-conversion efficiency.5 

 The three traditional technologies are Fire; 
Incandescence; and Fluorescence and High-
Intensity Discharges (HID).  These three 
traditional technologies have all made significant 
progress over the past 200 years, but appear to be 
saturating at efficiencies in the 1-25% range. 

A possible future scenario for white SSL-LED 
lamps is shown, in the dashed white lines in 
Figure 1, for which power-conversion efficiency 
rises to 50% by the year 2020.  This scenario, 
envisioned in a recent Roadmap 7  for SSL-LED 
technology, is shown in more detail in Table 1.  
Note that this scenario was developed under the 
assumption that significant national investment, 
beginning in 2002, be directed towards key 
science and technology challenges.  The scenario 
is likely to be different under different national 
investment assumptions.  Nevertheless, the 
scenario itself gives an idea of the ultimate 
performances that can be expected from this 
technology. 

A new, fourth technology is Solid-State 
Lighting.  In principle, the technology is simple:  
electrons and holes are injected into a forward-
biased semiconductor p-n junction; they 
recombine creating photons; the resulting photons 
are extracted from the chip; then the photons are 
either mixed with different-color photons from 
other LEDs, or are energy down-converted into a 
distribution of colors using phosphors or other 
down-conversion materials, with the colors 
chosen so as to create the appearance of white. 
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LAMP TARGETS        
Luminous Efficacy (lm/W) 20 75 150 200 16 85 90 
Lifetime (hr) 20,000 20,000 100,000 100,000 1,000 10,000 20,000 
Flux (lm/lamp) 25 200 1,000 1,500 1,200 3,400 36,000 
Input Power (W/lamp) 1.3 2.7 6.7 7.5 75.0 40.0 400.0 
Lamp Cost (in $/klm) 200.0 20.0 5.0 2.0 0.4 1.5 1.0 
Lamp Cost (in $/lamp) 5.0 4.0 5.0 3.0 0.5 5.0 35.0 
Color Rendering Index (CRI) 70 80 80 80 100 75 80 
DERIVED LAMP COSTS        
Capital Cost [$/Mlmh] 12.00 1.25 0.30 0.13 1.25 0.18 0.05 
Operating Cost [$/Mlmh] 3.50 0.93 0.47 0.35 4.38 0.82 0.78 
Ownership Cost [$/Mlmh] 15.50 2.18 0.77 0.48 5.63 1.00 0.83 
Table 1:  Roadmap Scenario for SSL-LED Technology, along with Comparisons to Traditional Lighting Technologies. 

The top half of the Table shows scenarios for 
the various lamp cost and performance parameters:  
luminous efficacy, in lm/W; lifetime, in hours; 
flux per lamp, in lm/lamp; input power to the 
lamp, in Watts/lamp or W/lamp; cost to purchase 
a lamp, in $/klm; cost to purchase a lamp in 
$/lamp; and finally color rendering index, or CRI, 
a measure of the quality of the white light. 

The bottom half of the Table shows derived 
lamp costs to the consumer.  The capital cost is 
the cost (per Mlm) to purchase the bulb or lamp, 
plus the labor cost to replace the bulb or lamp 
when it burns out, both amortized over its lifetime 
(up to a maximum of 20,000 hours).  The 
operating cost is the cost (per Mlm-hour or Mlmh) 
to run a light bulb or lamp – basically the ratio 
between the cost of the fuel and the luminous 
efficacy.8  The life-ownership or ownership cost is 
the sum of the capital and operating costs.  The 
units for all three are $/Mlmh. 

The ownership cost can be viewed as a single 
figure-of-merit for the economic case for SSL-
LEDs.  One can see that, if the scenario comes to 
pass, the ownership cost of SSL-LEDs will be 
lower than that of Incandescence by 2007, lower 
than those of Fluorescence and HIDs by 2012, and 
much lower than all traditional lighting by 2020. 

This scenario is aggressive, and it is by no 
means assured that it will come to pass.  SSL-
LED technology, though advancing rapidly, is 
still in its infancy, particularly with respect to 
general illumination applications.  Even very 
basic design choices are still being debated, and it 
is not yet clear which choices will best balance 

what is technologically possible with what the 
market prefers. 

In the remainder of this article, we discuss some 
of these design choices, for the lamp, for the chip 
“light engine” that will be the heart of the lamp, 
and for the semiconductor materials that the chip 
will be made from.  Throughout, we assume that 
these design choices must be consistent with the 
long-term Roadmap scenario, in order to clarify 
the challenges associated with that scenario. 

3 Lamp Design Choices 
For the lamp, illustrated in Figure 2, the major 

design choice is between:  phosphor down-
conversion or color mixing (along with hybrids 
between these two extremes).  Phosphor down-
conversion involves using a UV/purple LED to 
excite phosphors that emit wavelength-down-
converted RGB white light.  Color-mixing 
involves mixing colors from multiple LEDs to 
create RGB white light. 

Phosphor down conversion, because of its low 
system complexity, and because UV/purple LEDs 
and associated phosphors already exist, albeit with 
improvements to be desired, is the clear current 
design choice. 

In the long run, however, color mixing is likely 
to be more efficient, because it incurs no down-
conversion losses.  And, it is important to note, as 
efficiency is increased, both the operating and 
capital costs discussed in Section 2 decrease.  
Hence, higher efficiency is critical not just 
because it may lead to savings in electricity 
consumption, but because it will reduce the capital 
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Figure 2:  Phosphor down-conversion and color mixing approaches to SSL-LED lamps. 

cost associated with purchasing a given number of 
lumens. 

Hence, lower ownership cost will favor color 
mixing, provided it is technologically possible.  
Currently, though, it is not -- reasonably efficient 
LEDs currently exist only in the purple/blue and 
red portions of the spectrum.  Thus, one of the 
outstanding challenges in SSL-LED science and 
technology is efficient LEDs in the 
green/yellow/orange, where the human eye is 
most sensitive. 

4 Chip Design Choices 
For the chip “light engine” that will be at the 

heart of the lamp, one of the simplest but most 
important design choices has to do with the size of 
the chip.  The constraints on this design choice 
can be quantified by considering the 
characteristics of the semiconductor chip, 
illustrated in Figure 3, necessary for the Roadmap 
scenario to come to pass: 
• First, the chip must produce 1.5klm of white 

light – roughly the output of a 100W 
incandescent light bulb. 

• Second, the chip must have a luminous 
efficacy of 200lm/W.  The ratio between the 
1.5klm light output and the 200lm/W 
luminous efficacy gives 7.5W of input power.  
As mentioned in Section 2, a 200lm/W 
luminous efficacy is approximately equivalent, 
for a reasonable CRI, to a power conversion 
efficiency of 50%.  Hence, half of the 7.5W of 
input power goes into white light generation; 

the other half is lost and must be sunk by the 
heat sink. 

• Third, the capital cost of the light must be 
roughly $3 to the consumer per 1.5klm lamp.  
Assuming a factor 2x for wholesale-to-retail 
mark-up, and a factor 2x due to packaging 
cost, we can estimate that the chip must cost 
$3 divided by 4x, or 75 cents, to purchase. 

All together, the chip must cost 75 cents to 
purchase, must be driven by 7.5W, producing 
3.75W of white light and sinking 3.75W of waste 
heat.  Note that the cost to manufacture the chip 
may be yet another factor 2x lower than this, to 
allow for profits and mark-up by the chip 
manufacturer. 

Given these overall chip characteristics, we can 
now ask: what are the cost and performance trade-
offs that determine how large the chip can be?  
Some of the most important of these trade-offs are 
illustrated in the series of four graphs of Figure 4, 
all having chip area as a common y-axis. 
4.1 CHIP AREAL COST 

The first trade-off, illustrated in Figure 4D, is 
that between the areal cost of the chip (in $/cm2) 
and the area of the chip.  For a fixed chip cost of 
$0.75, the chip areal cost cchip must scale inversely 
as chip area Achip: 

)(
$75.0)/($ 2

2

cmA
cmc

chip
chip = . [1] 

Two extremes can be imagined. 
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One extreme is low in cost:  what one might 
call the red LED scenario, because 
AlGaInP/GaAs-based high-brightness red LEDs, 
for which unpackaged chips cost of the order 
$30/cm2 to purchase,9 are a relatively inexpensive 
compound semiconductor technology.  If GaN-
based LEDS (or lasers) with the targeted 
performance were this inexpensive, the chip area 
could be as large as 2.5mm2. 

The other extreme is high in cost:  what one 
might call the high-power laser scenario, because 
AlGaInAs/GaAs-based high-power semiconductor 
lasers, for which unpackaged chips cost of the 
order $300/cm2 to purchase, 10  are a relatively 
expensive compound semiconductor technology.  
If GaN-based LEDs (or lasers) with the targeted 
performance were this expensive, the chip area 
would in turn need to be as small as 0.25mm2. 

Note that two other points of reference for 
semiconductor chip areal costs are:  silicon 
integrated circuits, for which unpackaged chips 
cost approximately $5-15/cm2 to purchase;11 and 
state-of-the-art triple-junction compound-
semiconductor solar cells, for which unpackaged 
chips cost approximately $5-15/cm2 to purchase.12  
These chips cost even less (per cm2) to purchase 
than the low-cost extreme discussed above, and 
provide some support for the feasibility of the 
low-cost extreme.  However, they are based on 
technologies sufficiently different from SSL that 
cost comparisons are difficult.  In particular, 
neither technology is complicated by a need for 
efficient extraction of light from high-refractive-
index semiconductors into low-refractive-index 
air.  This complication may require relatively 
expensive chip-level (rather than wafer-level) 
fabrication processes for controlling optical 

modes and propagation, such as the facet 
cleaving/coating processes currently used to 
manufacture semiconductor lasers. 

Figure 3:  Geometry of SSL chip. 
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4.2 CHIP OPERATING POWER DENSITY 

The second trade-off, illustrated in Figure 4C, 
is that between the input power density to the chip 
poper (in W/cm2) and the area Achip of the chip.  For 
a fixed operating input power of Poper=7.5W, the 
chip operating input power density must scale 
inversely as chip area: 

)(
5.7)/( 2

2

cmA
WcmWp

chip
oper = . [2] 

At the low-cost large (2.5mm2) area extreme, 
chip input power densities would need to be 
300W/cm2.  At the high-cost small (0.25mm2) 
area extreme, chip input power densities would 
need to be 3kW/cm2.  Though these power 
densities are high, they are comparable to those 
used to drive high-power IR diode lasers, and are 
in and of themselves not likely to be 
insurmountable challenges.  Instead, it is the 
indirect effect, discussed next in Section 4.3, that 
such power densities will have on chip operating 
temperature that is likely to be a more significant 
challenge. 
4.3 CHIP OPERATING TEMPERATURE 

The third trade-off, illustrated in Figure 4A and 
Figure 4B, is that between the operating 
temperature of the chip, Toper, and the area of the 
chip. 

Consider a disk-shaped chip mounted using 
thermal paste to a semi-infinite heat sink.  Assume 
that the chip/paste combination has an area Achip, 
thickness hchip, and aspect ratio α=(4Achip/π)0.5/hchip.  
Such a chip/paste combination, generating heat 
then conducting it into a semi-infinite heat sink, 
will have a thermal resistance that scales 13 
inversely as both the square root of its area, and 
the effective thermal conductivity κeff

14  of the 
chip/paste combination and heat sink: 

πκ /42
1

chipeff
T

A
R ≅ . [3] 

This equation, represented by the dashed curve, 
fits reasonably well the data points shown in 
Figure 2A for the thermal resistances of high-
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Figure 4:  Scaling of chip thermal resistance, operating temperature and power density, and areal cost, with 
chip area. 

4.4 CHIP AREA power lasers with state-of-the-art active-area-
down diamond-heat-sinking.15 Which of these two size extremes SSL 

technology will evolve towards is not yet clear.  
Certainly, in the past few years, there has been a 
short-term trend towards larger chips – from 
0.25x0.25mm2=0.0625mm2 to 1x1mm2=1mm2  
areas.  This trend has been driven by a market 
need for higher light output per lamp, exacerbated 
by the low power-conversion efficiency of current 
technology. 

To estimate the effective thermal resistance of 
SSL chips, we assume a similar chip/paste 
thickness, but chip/paste and heat-sink thermal 
conductivities a factor 4x lower, under the 
assumption that diamond heat-sinking will be too 
expensive. 

As illustrated in Figure 4B, this means that, for 
a fixed power wasted into the heat sink, the chip 
operating temperature decreases as chip area 
increases.  If the chip is large, its operating 
temperature will be low; if the chip is small, its 
operating temperature will be high.  Assuming, in 
addition, that the combination of the heat sink and 
ambient temperature may itself be as high as 
350K, we can write: 

In the long term, assuming power-conversion 
efficiency improves, chip size may depend on 
which aspect of efficiency proves more difficult to 
improve:  radiative electron-hole recombination to 
generate light within the chip, or light extraction 
from the chip. 

operToper PRKT ⋅+= 350 . [4] 
If the former is true, then non-radiative 

electron-hole recombination, which competes 
with radiative electron-hole recombination, is 
likely to be significant.  If thermally activated, 
through carrier leakage out of intentional or 
unintentional composition fluctuations, then it is 
likely to be even more significant at higher 
operating temperatures.  If so, larger chips that 
heat up less might be favored. 

At the inexpensive, red LED extreme with large, 
2.5mm2 chip areas, the operating temperature can 
be as low as 375K, only 75K above the normal 
room temperature of 300K.  But at the expensive, 
high-power laser extreme with 0.25mm2 chip 
areas, the operating temperature may need to be as 
high as 425K, 125K above normal room 
temperature.  Though this operating temperature 
difference (from roughly 100C to 150C) may 
seem small, it can complicate significantly both 
chip performance and packaging. 

If the latter is true, then relatively expensive 
chip-level fabrication processes for controlling 
optical modes and propagation may be required.  
If so, smaller chips that are more expensive might 
be favored. 
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5 Materials Design Choices 
For the semiconductor materials that the chip 

will be fabricated from, one of the simplest but 
most important design choices has to do with the 
quality of the materials that the chip will be 
fabricated from.  This is an especially important 
design choice because the AlGaInN family of 
materials, likely to dominate SSL chips, is 
currently far more defective than more established 
semiconductor materials such as Si or GaAs. 

Note that there are many possible measures of 
material quality.  Here, we use dislocation density, 
under the assumption that dislocations have a 
stronger influence on important device 
performance characteristics than other kinds of 
defects.  Also note that there are many possible 
choices of device performance characteristics.  
Here, we use internal radiative efficiency and 
lifetime, as these may be relatively easily 
connected back to the Roadmap scenario. 
5.1 INTERNAL RADIATIVE EFFICIENCY: GAN 

Let us first consider internal radiative efficiency, 
as illustrated in Figure 5B.  In order to achieve an 

efficiency must be near 100%, as it is likely that 
other losses, including those associated with 
current injection and light extraction, will be 
difficult to eliminate completely. 

However, there is substant

overall power conversion efficiency of 50%, this 

ial evidence 16 
in

r, the capture zone may be viewed 
as

 a simple but approximate closed-
fo

dicating that, in GaN, radiative recombination is 
quenched in a capture zone around dislocations 
(illustrated as purple zones in the cartoon at the 
bottom of Figure 5).  Hence, as dislocation 
density ρdisl increases, internal radiative efficiency 
ηint decreases. 

To first orde
 having a radius on the order of the minority 

carrier diffusion length Lo.  To second order, 
however, the minority carrier diffusion length 
itself depends on dislocation density.  Hence, the 
dependence of internal radiative efficiency on 
dislocation density must in general be solved self-
consistently.17 

Here, we use
rm model18: 

1

disloL ρπ
η 22int 1+

= . [5] 
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Figure 5:  Scaling of chip efficiency and lifetime with dislocation density. 
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ow consider device lifetime, illustrated 
in Figure 5A. 

It is known that in many high-current-density 
compound-semiconductor-based optoelectronic 

mposition fluctuations.  The depth of the 
composition fluctuations depend on the average 
InGaN composition; for average InGaN 
compositions enabling emission at blue-green 
wavelengths, the fluctuations have been estimated 
to be δEfluc ~ 0.05-0.06eV.20 

With these assumptions, the capture radius at 
room temperature (300K) is roughly Lo ~ 20nm.  
Then, as illustrated by the g

minority carrier diffusion length of Lo = Lo,GaN = 
160nm.  This curve is a fit to the data points in 
purple.19  The implication of this curve is that, for 
GaN, internal radiative efficiency begins to 
decrease noticeably at a dislocation density in the 
low 107/cm2 range. 

Note that the key parameter in Equation 5, the 
minority carrier diffusion length, depends on 
additional factors, 

, the decrease in internal radiative efficiency 
does not begin to be noticeable until dislocation 
densities are in the high 109/cm2 range.  As a 
rough comparison with experiment, we show data 
points in green from measurements 21  of InGaN 
radiative efficiency. 

At the temperatures, 375K and 425K, 
associated with the two chip scenarios (low-cost 
large-area and high-

mperature.  Hence, under some conditions (e.g., 
high current injection), the dependence of internal 
radiative efficiency on dislocation density can 
potentially be shifted to higher dislocation 
densities. 
5.2 INTERNAL RADIATIVE EFFICIENCY: INGAN 

In InG dii increase to roughly lo ~ 30nm and 35nm, 
respectively.  As illustrated by the red and blue 
curves in Figure 5B, the associated decrease in 
radiative efficiency becomes noticeable at lower 
dislocation densities -- in the high 108/cm2 range. 
5.3 IMPLICATIONS OF INTERNAL RADIATIVE 

EFFICIENCY ON DISLOCATION DENSITY 

recom
dislocations.  However, composition fluctuations 

d inhomogeneities (illustrated as the small 
green zones in the cartoon at the bottom of Figure 
5), are thought to trap electron-hole pairs away 
from the dislocations. 

To describe this trapping in an approximate 
way, here we assume that internal radiative 
efficiency still dec

All
described in Sections 5.1 and 5.2, we can 

marize the implications of dislocation den
slocation density according to Equation 5.  

However, the effective capture radius now must 
be reduced due to trapping of electron-hole pairs 
away from the dislocations. 

At low temperatures, we assume the trapping to 
be 100% efficient, and replace the capture radius 
with the spatial scale o

 internal radiative efficiency.  For GaN, the 
necessary dislocation density appears to be in the 
low 107/cm2 range.  For InGaN, the necessary 
dislocation density appears to be in the high 
108/cm2 range. 

Most importantly, both are within the range of 
current substrate and buffer layer technologies.  
The high 108/cmctuations, Lo = Lo,InGaN ~ 5nm. 

At higher temperatures, we assume that carriers 
occasionally escape from the composition 
fluctuations.  The traps become “

timized single-growth buffers;22 while the low 
107/cm2 range can be achieved in multiple-growth 
epitaxial lateral overgrowth buffers23.  Hence, a 
tentative conclusion is that high internal radiative 
efficiency is not likely to require new substrate 
technologies with radically reduced dislocation 
densities. 
5.4 DEVICE LIFETIME 

Let us n

 very high temperatures the capture radius must 
eventually increase back to that associated with 
pure GaN.  To take this into account in a smooth 
though approximate way, we write: 

kTE
InGaNoGaNoInGaNoo

fluceLLLL /
,,, )( δ−⋅−+= .[6] 

Here, the transition from small to l
the 
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technologies, degradation is caused by non-
ra

 dark-line defects that absorb light 
an

 
do

The curve in green is the lifetime for a small 
chip driven fairly softly – thi

3Vx2.5mm2]) and 
te

s are valid, the 
dislocation density necessary for long-lived GaN 
and InGaN chips is in the 106 to 108/cm2 range, 

de

 and 5.2, necessary to 
en

gh to 
re

its infancy, however, 
aterials design 

ated actively.  However, 
th

e form of trade-
of

d on which 
as  

pending on whether the small or large chip 
scenario “wins.”  These dislocation densities are 
roughly one order of magnitude lower than those 
found, in Sections 5.1

diative recombination at dislocations, which 
causes the dislocations to move, multiply, and 
eventually form

d reduce overall chip efficiencies.24  Little is yet 
known about the physics of degradation in GaN 
and InGaN LEDs and lasers, and it is possible that 
resistance to dislocation motion is so high in these 
materials25 that  other mechanisms will dominate. 

Here, however, we assume, as conjectured by 
Fang, et al., 26  that dislocation motion in the 
presence of high injected currents is a source of 
device degradation.  Then, after all other 
processing-related failure mechanisms (e.g., 
ohmic-contact overheating) are eliminated, the

minant failure mechanism would be a 
dislocation-mediated mechanism similar to that of 
other compound-semiconductor-based 
optoelectronic devices.  If so, device lifetime 
might scale inversely with both dislocation and 
current density, and be “lightly” thermally 
activated: 

kTE
currdisllife ejB /11 ∆−− ⋅⋅⋅= ρτ . [7]. 

Then, through an analysis of data by Egawa et 
al.27, we can estimate the parameters B and ∆E, 
and project the curves illustrated in Figure 5A. 

sure high internal radiative efficiency.  Better 
data and better models are necessary, of course, 
but our interim conclusion is that device lifetime 
may constrain dislocation density more tightly 
than high internal radiative efficiency does. 

Nevertheless, in the large-area chip scenario, 
the 108/cm2 dislocation density required to ensure 
long-lived chips is high enough to be achievable 
using current substrate and buffer layer 
technologies.  However, in the small-area chip 
scenario, the 106/cm2 dislocation density required 
to ensure long-lived chips is low enou

quire development of alternative substrate 
technologies.  But it is high enough not to require 
development of thus-far-problematic melt-growth 
technologies capable of achieving dislocation 
densities less than 104/cm2. 

6 Conclusions 
Solid-state lighting has tremendous potential, 

and the long-term lamp targets envisioned in the 
recent update to the U.S. SSL-LED Roadmap are 
intended to enable that potential. 

Solid-state lighting is in 
and many basic lamp, chip and m
choices are being deb

s is roughly the past 
year’s (2002) technology.  For a dislocation 
density in the mid 109/cm2 range, the lifetime 
projects out to 20,000 hours, which is roughly 
consistent with experience. 

ese design choices are constrained if the 
technology is to achieve its potential in general 
white light illumination applications. 

A first set of constraints takes thThe curve in red is the lifetime for the large-
chip scenario -- to achieve lifetimes of 50,000 
hours, dislocation densities need to be less than 
4x107/cm2.  Superimposed over the curve in red is 
the data of Egawa, et al, scaled using Equation 7 
to the current density (7.5W/[

fs between chip area, chip areal cost, and 
operating temperature and power density.  Two 
extremes are possible:  a large-area low-power-
density low-areal-cost chip, and a small-area high-
power-density high-areal-cost chip.  The extreme 
that “wins” is conjectured to depenmperature (375K) associated with the large-chip 

scenario, to give an indication of the self-
consistency of the data and fit. 

The curve in blue is the lifetime for the small-
chip scenario -- to achieve lifetimes of 50,000 
hours, dislocation densities need to be less than 
8x105/cm2. 

Hence, if these projection

pect of efficiency is more difficult to improve: 
radiative electron-hole recombination to generate 
light within the chip, or light extraction from the 
chip. 

A second set of constraints takes the form of 
trade-offs between disclocation density, internal 
radiative efficiency, and device lifetime. The 
constraints on device lifetime appear to require 
lower dislocation densities than those on device 
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efficiency.  In the large-area chip scenario, the 
required 108/cm2 dislocation densities can be 
ac

constrained” technical cost models 
ary Crawford, 

, Mike Coltrin, 
C

hieved by current substrate and buffer 
technologies; but in the small-area chip scenario, 
the required 106/cm2 dislocation density may 
require development of alternative substrate 
technologies. 
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